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* Challenges:

Massive integration of solar PV generation makes it prohibitively difficult to
perform accurate transient/dynamic analyses:

Exhaustive physical models of all subsystems
Astronomical contingencies and solar generation scenarios

* Qur solution:

Ultra-scalable modeling and analytics of both transient and dynamic behaviors
of power grids with solar PVs at all grid levels by exploiting the physics-aware
machine learning:

Accurately represent system behaviors at all levels
Identify security risks under infinite PV scenarios in grid operations
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Solar PLUS Overview

Funded by:
SOLAR ENERGY

//// TECHNOLOGIES OFFICE
///“ U.S. Department Of Energy

The proposed project includes three main parts:
1) Physical model library

2) Al-enabled scalable modeling

3) Al-enabled scalable analytics

Physical Model Library: Representative BTM
Load and PV Compositions
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Ultra-Scalable Analytics:

Dynamic Verification for Infinite Uncertain Scenarios
Online Trans/Dynamic Analysis for Potentially
Assessing 1k+ Contingencies
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Physical Model Library
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e Goals: a high-fidelity model library of BTM
PV and loads based on real-world system
information

* Accomplishment: Validated library with 10+
types of load and PV models

Benefits:

* Provide a substantial coverage for the dynamic
models of the BTM generations and loads under
different simulation scenarios

e Effectively tackle the distribution system data-
insufficiency problem by serving as a high-
fidelity training data synthesizer for data-driven
modeling development.
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Load and PV Compositions

Data for Areas )
with Limited — | _| 2
Meters _:::_nﬁ ] ?*_;E;_ L

Transfer
Learning f
bt
Field Data — ’
and Load =~ — I I P
Information ._:=-__]l ]‘-'._i-i LL_—ljl
o

This presentation may have proprietary information and is protected from public release.



Funded by:
"  SOLAR ENERGY

Scalable Subsystem Modelling via Neural ODE W | rensbesom

5. Depariment Of €

* @Goal:

Develop an advanced Neural ODE model to accurately track

continuous system operational states under missing/noise data.

* Variational Stochastic Differential Networks (VSDN)
model :

Generates continuous state trajectories from discrete data
samples.

Generative model: can recurrently predict the future values O

of the sequence.

. . Fig 2.2: Block diagram of the filtering
Inference model: filters out the noise and shares the ODE inference model used for experiments [1]

and drift functions.

[1] Liu, Yingru, et al. "Continuous-time stochastic differential networks for irregular time series modeling." Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali,
Indonesia, December 8-12, 2021, Proceedings, Part V 28. Springer International Publishing, 2021.
[2] De Brouwer, Edward, et al. "GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series." Advances in neural information processing systems 32 (2019)
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Experimental Results Wi R

Experiments were performed on SETO 1001-bus 14DG microgrid system,
developed by SBU team.

% noise 1 % missing data

o

0% 0% 0.0097 0.0042 0.0201
30% 0.0414 0.0124 0.0610
50% 0.0586 0.0168
0% 0.0122 0.0074 0.0271
30% 0.0421 0.0152 0.0669
50% 0.059 0.0192 Q102
0% 0.0381 0.0270 0.0848
30% 0.0575 0.0344 0.1313
50% 0.0695 0.0361 0.1523

Table 2.1: Error performance metrics of VSDN model on 1001-bus data
Fig 2.2: Topology of the SETO 1001-bus 14-DG system



Experimental Results Wi R

*  Predicted mean of node voltage trajectories of node 632 of 1001-bus data for different

scenarios
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Al-enabled scalable analytics: Neuro-Reachability W

How to verify uncertain dynamics ‘ Neuro-Reachability: conformance-
with data-driven system models? empowered reachable dynamics
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Experiments and Validation W s

Test system: 1001-bus transmission-distribution system
7 distribution grids and 14 IBRs
Each IBR has a double-loop droop controller
Grid 6 and 7 are modeled by ODE-Net

Reachable set under 10% uncertainty from each PV.

Without fault Under the short-circuit fault
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ODE-Net-enabled neuro-reachability conforms with the model-driven

reachable sets =» A data-driven tool for verifying power grid dynamics .
with both renewable uncertainties and unidentified subsystem models
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Al-enabled scalable analytics: Neuro-Awareness it

How to track dynamics of the system ‘
with unidentified subsystems?

Challenges:
Complete physics model of the whole
systems may not always be attainable

Contributions:

Neural dynamic state estimation (Neuro-
DSE) for Networked Microgrids with
partially unidentified subsystems by
integrating ODE-Net into Kalman filters.

Neuro-Awareness: Data-driven
dynamic state estimation(DSE)
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Experiments and Validation

° Test system: 33-bus microgrid system ;oo
5 grid forming based IBRs 8 i St

Each IBR has a double-loop droop controller
Microgrid 4 is modeled by ODE-Net |

* ODE-Net under 20% uncertainties of DER power input.g———3-~ i-LJ]}—JM‘l i
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Simulation validates the effectiveness of Neuro-DSE under
different noise levels
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° @Goal: to accelerate the simulation of full power system
transient trajectories.

* Key: One predictor is trained for each generator. wl S .
ond. ..&! FLH L |
Replace the time-consuming dynamic computation of |, [Frysea ., [Prvsica o [ohysca
. . . odel: - Model: - odel:
the generators with trained predictors I_' o e e
H H HPS H H I"'(!).& Ror "o
[ J -
Retqln the time-efficient algebraic computation of N[ N[
solving AC-PF ML hy >L51“<h
* Key Advantages M2 e Q:ﬂz/ﬁi
® Scalability : |ndependent CompleX|ty Fully Connected Fully Connected Fully Connected
. Layer K Layer k Layer
° No re-training: agnostic to changes ——
° Flexible training strategies:— joint, local, and " o
singular — allowing different trade-offs between  lteratively alternates between calling all
offline training complexity and online testing the trained predictors, solve AC-PFs and
accuracy update inputs collectively.
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Performance Evaluation
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* We simulated 2,460 N - 2
contingencies in a 68 bus

collected

simulated trajectories.

° Excellent performance in
accuracy

system,

both

computation

demonstrated.
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68-bus 16-generator system.

TABLE II: Computational Efficiency

TABLE I: Perf C . f Trainine Stratesi Offline  Offline [ Online | Online  _ |
. Ferftormance Lomparison o raming rategies Model Training Compute Compute Compute %
. ™ ode time Memory Time Memory = oot
Training Strategy Avg. RMSE Avg. Relative RMSE [min] [MB] [s] [MB]
0.9 L L L - : L
Joint 3.631-10— 4.056-10"2 Singular 229 2945 2.16 1545 04 05 06 07 08 09 1 11 12 13 14
Local 5.372-1073 Local 767 2247 2.16 1545 .
Singular 8.720- 1073 Joint 2609 2941 2.16 1545
/ Numerical - - L 19.9 J 269
J. Li, Y. Zhao, and M. Yue, “Integrating learning and physics based computation for fast online transient o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
analysis,” Proc. IEEE Conference on Innovative Smart Grid Technologies (ISGT), 2023. ‘o4 05 06 07 08 E
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